Supplemental Material Developmental Fluoride Neurotoxicity: A Systematic Review and Meta-Analysis Anna L Choi, Guifan Sun, Ying Zhang, Philippe Grandjean ## Supplemental Material, Table S1. Information on studies that were excluded | | | | | Fluoride exposure | | | | | |--|----------------------------------|---------------------------------------|-------------------------|--------------------------|---|---|--|--| | Reference,
Study
location | No. in high
exposure
group | No. in
reference
group | Age
range
(years) | Assessment | Range | Outcome
Measure | Results | Reason for
Exclusion | | Liu et al.
2000
Tianjin,
China | 60 | 58 | 10-12 | Drinking water | 3.15 mg/L (high)
0.37 mg/L
(reference) | CRT-RC ^a | Children in the high
fluoride area scored
significantly lower IQ
scores than those in the
control area | Duplicate study of
Lu et al. 2000 | | Xu and Hu
1993
Ningxia,
China | 395 | 608 | 8-14 | Drinking water | 1.8 mg/L (high)
0.8 mg/L
(reference) | Chinese Binet | No effect of high fluoride levels on IQ | Duplicate study of
Xu and Hu in
1991 | | Calderon et
al. 2000
Mexico | 61
(total) | - | 6-8 | Drinking water;
Urine | 1.2-3 mg/L;
4.3 mgF/g
creatinine | WISC-RM, Rey
Osterreith-
Complex Figure;
CPT | Urinary F correlated positively with reaction time and inversely with visuospatial scores; IQ scores not influenced by fluoride exposure. | Individual-level
measure of
exposure | | Rocha-
Amador
et al. 2007
Mexico | 132
(total) | - | 6-10 | Drinking wáter;
Urine | 0.8-9.4 mg/L
(means);
0.6-25 mg F/g
creatinine | WISC-RM | An inverse association
between F (in urine and in
drinking water) and
performance, verbal, and
full IQ scores | Individual-level
measure of
exposure | | Ding et al.
2011
Inner
Mongolia,
China | 331
(total) | - | 7-14 | Drinking water;
Urine | 0.24-2.84 mg/L;
0.1-3.55 mg/L | CRT-RC ^a | Urine fluoride was
inversely associated with
IQ in the multiple
regression model | Individual-level of exposure | | Hu and Yu
1989
Shaanxi,
China | 198 | 181 | 6-14 | Drinking water | 7ppm (high);
<0.8ppm
(reference) | IQ
(test not
specified) | Effects of fluoride and IQ in children not specifically mentioned (but no effect of fluoride poisoning on intellectual ability in adults was reported) | Missing SDs in each group | | Qin et al.
1990
Hebei, China | 141 (high) | 147
(normal)
159
(reference) | 9-10.5 | Drinking water | 2.1-4 mg/L (high)
0.5-1 mg/L
(normal)
0.1-0.2 mg/L
(reference) | Raven | Fluoride levels can disrupt intellectual development | Missing
mean (SD) of
outcome measures | | Xu and Hu
1991
Ningxia,
China | 395 | 608 | 7-17 | Drinking water | 3.99 mg/L (high);
0.73 mg/L
(reference) | Chinese Binet | No effect of high fluoride levels on IQ | Missing SD of outcome measures | | Li et al. 1993
Guizhou,
China | - | - | 8-13 | Coal burning | 2.69(1.32) mg/L
(high);
2.01(1.11) mg/L
(normal);
1.81(0.33) mg/L
(low);
1.02(0.13) mg/L
(reference) | CRT-RC | IQ scores were
significantly lower among
children in high and
normal fluoride exposure
areas than those in low and
control areas | Missing number of subjects in each group | | Hao et al.
2002
Henan, China | 1346 | 1566 | 8-12 | Drinking water | 2.7-4.8 mg/L (high)
<0.8 mg/L
(reference) | CRT-RC ^a | Children from high F areas scored lower IQ than those from the control area | Missing mean(SD)
of outcome
measures | | Wang et al.
2005
Guizhou,
China | 176 | 50 | 7-12 | Urine | >1.0-8.6 mg/L
(high)
0.58-1.0 mg/L
(reference) | Raven | Children from the high
fluoride group showed
retarded development | Missing mean(SD) of outcome parameters | | Trivedi et al.
2007
India | 89 | 101 | 12-13 | Drinking water; | 5.55(0.42) mg/L
(high);
2.01 (0.009) mg/L
(reference) | IQ
Questionnaire ^b | Children in the high
fluoride area scored lower
IQ than those from
reference fluoride area | SDs of mean
outcome
parameter were
questionably small | ^aCRT-RC denotes Chinese Standardized Raven Test, rural version (Wang et al. 1989) ^bDevelopmed by Professor JH Shah (Desai K, Desai H. Psychological Measurement, Gujarat University Press, Gujarat State; India 1989) ## References - Calderon J, Machado B, Navarro M, Carrizales L, Ortiz MD, Diaz-Barriga F. 2000. Influence of fluoride exposure on reaction time and visuospatial organization in children. Epidemiol 11(4):S153. - Ding Y, Gao Y, Sun H, Han H, Wang W, Ji X, Liu X, Sun D. 2011. The relationships between low levels of urine fluoride on children's intelligence, dental fluorosis in endemic fluorosis areas in Hulunbuir, Inner Mongolia, China. 2011. J Hazard Mater 186:1942-1946. - Hao K, Chen H, Zhu X. 2002. Research on the effect of high fluoride exposure on children's intelligence. Henan Med Info. 10(17):87. (in Chinese) - Hu Y, Yu Z. 1989. Research on the intellectual ability of 6-14 year old students in an area with endemic fluoride poisoning. Collection of papers and abstracts of 4th China Fluoride Research Association. 6:73. Available online: http://www.fluoridealert.org/chinese/. - Li SS, Ji JL, Kao YC. 1993. Comparison and analysis of the intelligence of children in different fluorosis communities. Chinese J Control Endemic Dis 8(6):372-373. (in Chinese) - Liu S, Lu Y, Sun Z, Wu L, Lu W, Wang X, Song Y. 2000. Report on the intellectual ability of children living in high fluoride zones. The Chinese Journal of Control of Endemic Disease. 200. 15(4):231-232. (in Chinese) (Also available: Fluoride 33(2):74-78, which was included in the analysis). - Qin L, Cui S, Chen R, Chang Y. 1990. Using the Raven's Standard Progressive Matrices to determine the effects of the level of fluoride in drinking water on the intellectual ability of school-age children. Chinese J Control Endemic Dis 5(4):203-204. Available online: http://www.fluoridealert.org/chinese/. - Rocha-Amador D, Navarro ME, Carrizales L, Morales R, Calderon J. 2007. Decreased intelligence in children and exposure to fluoride and arsenic in drinking water. Cad. Saúde Pública 23 Suppl 4:S579-587. - Trivedi MH, Verma RJ, Chinoy NJ, Patel RS, Sathawara NG. 2007. Effect of high fluoride water on intelligence of school children in India. Fluoride 40(3):178-183. - Wang S, Zhang H, Fan W, Fang S, Kang P, Chen X, Yu M. 2005. The effects of endemic fluoride poisoning caused by coal burning on the physical development and intelligence of children. J Appl Clin Pediatr 20(9):897-899. (in Chinese) (Also available: Fluoride 41(4):344-348). - Xu K, Hu X. 1991. The analysis of the effects of high fluoride exposure to children's physical and intellectual development. J Ningxia Med Sch. 13(4):19-22. (in Chinese) - Xu K, Hu X. 1993. The analysis of the effects of high fluoride exposure to children's physical and intellectual development. Endemic Dis Bull. 8(2):92-95. **Supplemental Material, Figure S1.** Random-effect SMD estimates and 95% CIs of child's intelligence score associated with high exposure to fluoride among 28 studies including Trivedi et al. 2007 with questionably small SDs (highlighted in a black textbox). SMDs for individual studies are shown as solid diamonds (♦), and the pooled SMD is shown as a non-filled diamond (◊). Horizontal lines represent 95% CIs for the study-specific SMDs.